Clinical Effects of Photofunctionalization on Implant Stability and Marginal Bone Loss: Systematic Review and Meta-Analysis

Author:

Lang Xinrui,Qiao Bo,Ge Ziyu,Yan Jiahui,Zhang Yanzhen

Abstract

Background: Several clinical trials have recently been conducted to elucidate the effectiveness of photofunctionalization. The aim of this review was to systematically analyze the clinical effects of photofunctionalization on implant stability and marginal bone loss (MBL). Methods: An electronic search in four databases and a manual search were conducted in September 2022. Randomized controlled trials (RCTs), clinical controlled trials (CCTs), and cohort and case-control studies evaluating the effects of photofunctionalization on implant stability or marginal bone loss (MBL) in humans were included. The methodological quality assessment using RoB 2.0 and the ROBINS-I tool was performed based on different study designs. Results: Seven studies were included for a qualitative analysis, and five of them were chosen for a meta-analysis. The meta-analysis revealed that photofunctionalization significantly improved the stability of the implant 2 months after implantation (p = 0.04; MD = 3.48; 95% CI = −0.23 to 6.73) and increased the osseointegration speed index (OSI) (p = 0.007; MD = 2.13; 95% CI = 0.57 to 3.68). However, no significant improvements of implant stability were observed 2 weeks (p = 0.62), 4 weeks (p = 0.31), nor 4 months (p = 0.24) after implantation. The evaluation presented no significant reductions in MBL. Conclusions: Based on the positive effect of photofunctionalization on the rate of establishing implant stability, photofunctionalization may provide an effective and practical strategy to achieve faster osseointegration and reduce the overall healing time. Photofunctionalization appears to improve the implant stability. However, the clinical effect of photofunctionalization on MBL remains unclear due to the shortage of available studies.

Funder

Zhejiang Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Beyond microroughness: novel approaches to navigate osteoblast activity on implant surfaces;International Journal of Implant Dentistry;2024-07-05

2. Nanofeatured surfaces in dental implants: contemporary insights and impending challenges;International Journal of Implant Dentistry;2024-07-04

3. Biopiezoelectromagnetic and mechanical effect;Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications;2024-03-26

4. Vacuum Ultraviolet (VUV) Light Photofunctionalization to Induce Human Oral Fibroblast Transmigration on Zirconia;Cells;2023-10-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3