Biopiezoelectromagnetic and mechanical effect

Author:

Andreucci Carlos Aurelio1ORCID,Fonseca Elza M M2,Jorge Renato N1

Affiliation:

1. Mechanical Engineering Department, Faculty of Engineering, University of Porto, Porto, Portugal

2. Mechanical Engineering Department, School of Engineering, Polytechnic Institute of Porto, Porto, Portugal

Abstract

The study of the functional living organism through biological phenomena and their piezoelectric and electromagnetic interaction of particles and energy in the functional cells of organ systems that sustain life through homeostasis, and their relationship with the external environment, can be observed as a unique effect called the biopiezoelectromagnetic effect. Research in sciences, combined with the use of innovative technological tools and instruments at scales ranging from the subatomic to the astrophysical, have made it possible to observe, through these individual or combined effects, a phenomenon that is repeated in all structures: the conservation of elemental information. This approach makes it possible to research from the particle to the functional living organism in its environment and vice versa. It is possible to propose theories that link energy, particles and cells and their organised structural complexes within the same framework, analysing the biopiezoelectromagnetic effect and the constant effort to maintain the homeostasis of living organisms in an entropic environment. Biomaterials composed of crystals and quasicrystals promote the piezoelectric effect in living tissue-biomaterial contact. The piezoelectric effect is already known to stimulate and form a fibrocartilaginous bone callus and its subsequent hardening into mature bone but has never been directly associated with homeostasis, osseointegrated implants and biomaterial bonding. The synthesis described by evidence-based experiments over the past centuries is robust to describe the biopiezoelectromagnetic effect as a cascade of events in the functional living organism to maintain homeostasis and its binding properties as the basis of osseointegration and the foundation of biocompatibility.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3