Affiliation:
1. College of Animal Science and Technology, Guangxi University, Nanning 530004, China
2. Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
3. College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
Abstract
Exosomes are biological vesicles secreted and released by cells that act as mediators of intercellular communication and play a unique role in virus infection, antigen presentation, and suppression/promotion of body immunity. Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most damaging pathogens in the pig industry and can cause reproductive disorders in sows, respiratory diseases in pigs, reduced growth performance, and other diseases leading to pig mortality. In this study, we used the PRRSV NADC30-like CHsx1401 strain to artificially infect 42-day-old pigs and isolate serum exosomes. Based on high-throughput sequencing technology, 305 miRNAs were identified in serum exosomes before and after infection, among which 33 miRNAs were significantly differentially expressed between groups (13 relatively upregulated and 20 relatively downregulated). Sequence conservation analysis of the CHsx1401 genome identified 8 conserved regions, of which a total of 16 differentially expressed (DE) miRNAs were predicted to bind to the conserved region closest to the 3′ UTR of the CHsx1401 genome, including 5 DE miRNAs capable of binding to the CHsx1401 3′ UTR (ssc-miR-34c, ssc-miR-375, ssc-miR-378, ssc-miR-486, ssc-miR-6529). Further analysis revealed that the target genes of differentially expressed miRNAs were widely involved in exosomal function-related and innate immunity-related signaling pathways, and 18 DE miRNAs (ssc-miR-4331-3p, ssc-miR-744, ssc-miR-320, ssc-miR-10b, ssc-miR-124a, ssc-miR-128, etc.) associated with PRRSV infection and immunity were screened as potential functional molecules involved in the regulation of PRRSV virus infection by exosomes.
Funder
National Natural Science Foundation of China
Special Project on Innovation Driven Development of Guangxi
National Modern Agricultural Industrial Technology System
Subject
General Veterinary,Animal Science and Zoology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献