Untargeted metabolomics investigating porcine reproductive and respiratory syndrome virus biomarkers of serum‐derived exosomes in piglets infected with PRRSV NADC30‐like CHsx1401

Author:

Cheng Feng12ORCID,Li Jia13,Zhou Chunxiang4,Zhou Lei5,Lan Ganqiu2,Liang Jing2,Wang Lixian1,Wang Ligang1ORCID

Affiliation:

1. State Key Laboratory of Animal Biotech Breeding Institute of Animal Science Chinese Academy of Agricultural Sciences (CAAS) Beijing China

2. College of Animal Science and Technology Guangxi University Nanning China

3. College of Animal Science and Technology Beijing University of Agriculture Beijing China

4. Huanghe S&T University Zhengzhou China

5. College of Veterinary Medicine China Agricultural University Beijing China

Abstract

AbstractPorcine reproductive and respiratory syndrome virus (PRRSV) is one of the most severe swine diseases in the pig industry. The identification of biomarkers for PRRSV infection is valuable for controlling, eliminating, and treating PRRSV. This study utilized the ultra‐performance liquid chromatography–mass spectrometry metabolite profiling platform to identify differential metabolites in exosomes between the control and NADC30‐like PRRSV strain infected pigs. Using multivariate analysis combined with univariate analysis, unsupervised principal component analysis and orthogonal partial least squares discriminant analysis models were constructed between the groups. A total of 41 differential metabolites were detected, with 14 upregulated and 27 downregulated metabolites with PRRSV infection. MetaboAnalyst and Kyoto Encyclopedia of Genes and Genomes were used to identify potentially relevant significant pathways, and a receiver operating characteristic curve was used to quantify the predictive performance of differential metabolites. The results indicated that tryptophan‐related L‐kynurenine, 5‐hydroxytryptophan, and D (+)‐tryptophan significantly increased among PRRSV infected groups, which may play an important role in the progression of PRRSV infection. Metabolites related to amino acid synthesis and metabolism, including 2‐arachidonoylglycerol Lysopcs and phosphatidylcholines may also contribute to the lack of immune protection in piglets after PRRSV infection. Moreover, L‐kynurenine and taurocholic acid may serve as potential biomarkers for early diagnosis or drug targeting of PRRSV. Overall, these findings provide an important reference to our understanding of PRRS pathogenesis and immune or protective responses during PRRSV acute infection in the host.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3