Simultaneous Extraction of Road and Centerline from Aerial Images Using a Deep Convolutional Neural Network

Author:

Alshaikhli Tamara,Liu WenORCID,Maruyama YoshihisaORCID

Abstract

The extraction of roads and centerlines from aerial imagery is considered an important topic because it contributes to different fields, such as urban planning, transportation engineering, and disaster mitigation. Many researchers have studied this topic as a two-separated task that affects the quality of extracted roads and centerlines because of the correlation between these two tasks. Accurate road extraction enhances accurate centerline extraction if these two tasks are processed simultaneously. This study proposes a multitask learning scheme using a gated deep convolutional neural network (DCNN) to extract roads and centerlines simultaneously. The DCNN is composed of one encoder and two decoders implemented on the U-Net backbone. The decoders are assigned to extract roads and centerlines from low-resolution feature maps. Before extraction, the images are processed within an encoder to extract the spatial information from a complex, high-resolution image. The encoder consists of the residual blocks (Res-Block) connected to a bridge represented by a Res-Block, and the bridge connects the two identical decoders, which consists of stacking convolutional layers (Conv.layer). Attention gates (AGs) are added to our model to enhance the selection process for the true pixels that represent road or centerline classes. Our model is trained on a dataset of high-resolution aerial images, which is open to the public. The model succeeds in efficiently extracting roads and centerlines compared with other multitask learning models.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3