Dual Parallel Branch Fusion Network for Road Segmentation in High-Resolution Optical Remote Sensing Imagery

Author:

Gao Lin1,Chen Chen1

Affiliation:

1. School of Information Science and Engineering, Shenyang Ligong University, Shenyang 110159, China

Abstract

Road segmentation from high-resolution (HR) remote sensing images plays a core role in a wide range of applications. Due to the complex background of HR images, most of the current methods struggle to extract a road network correctly and completely. Furthermore, they suffer from either the loss of context information or high redundancy of details information. To alleviate these problems, we employ a dual branch dilated pyramid network (DPBFN), which enables dual-branch feature passing between two parallel paths when it is merged to a typical road extraction structure. A DPBFN consists of three parts: a residual multi-scaled dilated convolutional network branch, a transformer branch, and a fusion module. Constructing pyramid features through parallel multi-scale dilated convolution operations with multi-head attention block can enhance road features while suppressing redundant information. Both branches after fusing can solve shadow or vision occlusions and maintain the continuity of the road network, especially on a complex background. Experiments were carried out on three datasets of HR images to showcase the stable performance of the proposed method, and the results are compared with those of other methods. The OA in the three data sets of Massachusetts, Deep Globe, and GF-2 can reach more than 98.26%, 95.25%, and 95.66%, respectively, which has a significant improvement compared with the traditional CNN network. The results and explanation analysis via Grad-CAMs showcase the effective performance in accurately extracting road segments from a complex scene.

Funder

Liaoning Provincial Department of Education Youth Project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference40 articles.

1. Spatial information inference net: Road extraction using road-specific contextual information;Tao;ISPRS J. Photogramm. Remote Sens.,2019

2. MSACon: Mining Spatial Attention-Based Contextual Information for Road Extraction;Xu;IEEE Trans. Geosci. Remote Sens.,2022

3. Attention is all you need;Vaswani;Adv. Neural Inf. Process. Syst.,2017

4. Ronneberger, O., Fischer, P., and Brox, T. (2015, January 5–9). U-net: Convolutional networks for biomedical image segmentation. Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany. Proceedings, Part III 18.

5. Segnet: A deep convolutional encoder-decoder architecture for image segmentation;Badrinarayanan;IEEE Trans. Pattern Anal. Mach. Intell.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3