Abstract
The unmanned aerial vehicle (UAV) sensors and platforms nowadays are being used in almost every application (e.g., agriculture, forestry, and mining) that needs observed information from the top or oblique views. While they intend to be a general remote sensing (RS) tool, the relevant RS data processing and analysis methods are still largely ad-hoc to applications. Although the obvious advantages of UAV data are their high spatial resolution and flexibility in acquisition and sensor integration, there is in general a lack of systematic analysis on how these characteristics alter solutions for typical RS tasks such as land-cover classification, change detection, and thematic mapping. For instance, the ultra-high-resolution data (less than 10 cm of Ground Sampling Distance (GSD)) bring more unwanted classes of objects (e.g., pedestrian and cars) in land-cover classification; the often available 3D data generated from photogrammetric images call for more advanced techniques for geometric and spectral analysis. In this paper, we perform a critical review on RS tasks that involve UAV data and their derived products as their main sources including raw perspective images, digital surface models, and orthophotos. In particular, we focus on solutions that address the “new” aspects of the UAV data including (1) ultra-high resolution; (2) availability of coherent geometric and spectral data; and (3) capability of simultaneously using multi-sensor data for fusion. Based on these solutions, we provide a brief summary of existing examples of UAV-based RS in agricultural, environmental, urban, and hazards assessment applications, etc., and by discussing their practical potentials, we share our views in their future research directions and draw conclusive remarks.
Funder
Central China Normal University
Subject
General Earth and Planetary Sciences
Cited by
415 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献