Dynamic Response of Spatial Train-Track-Bridge Interaction System Due to Unsupported Track Using Virtual Work Principle

Author:

Yang Hongyin,Wu Nanhao,Zhang Wei,Liu Zhangjun,Fan Jianfeng,Wang Changjun

Abstract

An improved spatial vehicle–track–bridge interaction system considering the unsupported track is proposed using the virtual work principle. When the track fails to be supported due to the defects under the track, the corresponding bridge–rail connection coupled matrix should be removed. Using the proposed dynamic model, a novel numerical analysis of the unilateral and bilateral unsupported sleepers in the bridge and the subgrade is carried out. The results indicate that the wheel–rail contact force changes dramatically when the vehicles pass through the unsupported track. The unsupported track has a little effect on the displacement of the bridge, but it increases the acceleration of the bridge. The displacement and acceleration of the track increase significantly with the expansion of the supported defects under the track and the increase of driving speed. For unilateral unsupported sleepers, the dynamic response on the unsupported side is slightly smaller than that of the bilateral unsupported sleeper, while the unsupported side has a limited effect on the other side of the normal support.

Funder

National Natural Science Foundation of China

Open Projects Foundation of State Key Laboratory for Health and Safety of Bridge Structures

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3