Analysis of Train–Track–Bridge Coupling Vibration Characteristics for Heavy-Haul Railway Based on Virtual Work Principle

Author:

Wu Nanhao1,Yang Hongyin12,Afsar Haleem3ORCID,Wang Bo2,Fan Jianfeng4

Affiliation:

1. School of Civil Engineering and Architecture, Wuhan Institute of Technology, Wuhan 430073, China

2. National Key Laboratory of Bridge Intelligent and Green Construction, Wuhan 430034, China

3. Department of Civil and Airport Engineering, College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

4. Wuhan Mafangshan Engineering Structure Testing Co., Ltd., Wuhan 430070, China

Abstract

This paper introduces an innovative model for heavy-haul train–track–bridge interaction, utilizing a coupling matrix representation based on the virtual work principle. This model establishes the relationship between the wheel–rail contact surface and the bridge–rail interface concerning internal forces and geometric constraints. In this coupled system’s motion equation, the degrees of freedom (DOFs) of the wheelsets in a heavy-haul train lacking primary suspension are interdependent. Additionally, the vertical and nodding DOFs of the bogie frame are linked with the rail element. A practical application, a Yellow River Bridge with a heavy-haul railway line, is used to examine the accuracy of the proposed model with regard to discrepancy between the simulated and measured displacement ranging from 1% to 11%. A comprehensive parametric analysis is conducted, exploring the impacts of track irregularities of varying wavelengths, axle load lifting, and the degradation of bridge stiffness and damping on the dynamic responses of the coupled system. The results reveal that the bridge’s dynamic responses are particularly sensitive to track irregularities within the wavelength range of 1 to 20 m, especially those within 1 to 10 m. The vertical displacement of the bridge demonstrates a nearly linear increase with heavier axle loads of the heavy-haul trains and the reduction in bridge stiffness. However, there is no significant rise in vertical acceleration under these conditions.

Funder

National Natural Science Foundation of China

Open Projects Foundation of Engineering Research Center of Disaster Prevention and Mitigation of Southeast Coastal Engineering Structures of Fujian Province University

Construction Science and Technology Plan Projects of Hubei Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3