Heat and Mass Transfer by Vapour in Freezing Soils

Author:

Sarsembayeva AsselORCID,Zhussupbekov Askar,Collins Philip E. F.ORCID

Abstract

Vapour mass transfer is often underestimated when designing the bases for structures in frost susceptible soils. Intensive and long-term vapour transport may lead to excessive frost heaving and associated issues. A vapour transport model and the algorithm of its calculation is presented in this study based on the results of experimental freeze–thaw cycles of nine soil samples with varied density. The temperature field distribution, air voids volume and the energy comprising latent heat for the phase transition and heat extracted during the temperature drop are the main parameters for determining the vapour velocity and the amount of ice formed. According to the results, the average speed of vapour transport in frozen soils was about 0.4 m/h. The amount of ice built in 1 h during uniaxial freezing due to the saturated vapour pressure difference was 1.64 × 10−5–3.6 × 10−⁵ g/h in loose samples and 1.41 × 10−⁶ g/h to 5.61 × 10−⁷ g/h in dense samples of 10 cm diameter and 10 cm high sections. The results show that vapour mass transfer can increase the risk of ice growth and related problems.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference20 articles.

1. Deformations of frost heaving and thawing of soils during operation and damage to seasonal cooling devices;Sakharov;Ind. Civ. Constr.,2017

2. Freezing and Thawing of Soils (Practical Examples and Finite Element Calculations);Kudryavtsev,2014

3. Development of a Unified Geotechnical Database and Data Processing on the Example of Nur-Sultan City

4. The segregation potential of a freezing soil

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3