Author:
Konrad Jean-Marie,Morgenstern Norbert R.
Abstract
In previous work it has been shown that when a soil sample freezes in a one-dimensional manner under different cold-side step temperatures but the same warm-side temperature, at the formation of the final ice lens the water intake flux is proportional to the temperature gradient across the frozen fringe. The constant of proportionality has been called the segregation potential and this linear relation constitutes the coupling between heat and mass flow in a general theory of frost heave. This paper shows experimentally that the segregation potential is also a function of the average suction in the frozen fringe which is readily expressed in terms of the suction at the frost front. As a result it is also shown that measured water intake flux during freezing is dependent on the freezing path used to initiate the final ice lens. A thermodynamic explanation of the dependence of segregation potential on suction in the frozen fringe is also offered.
Publisher
Canadian Science Publishing
Subject
Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology
Cited by
289 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献