The impact of the temperature and humidity state of the road on heat and mass transfer in winter

Author:

Sarsembayeva AsselORCID,Collins PhilipORCID,Saginov Zamir,Mussakhanova Saltanat

Abstract

Sharp diurnal temperature fluctuations in Astana, Kazakhstan, in winter, as well as freezing up to 2 or more meters leading to the destruction of the roadway, especially during the spring thaw, prompted a detailed study of the state of roads. In this work, the temperature and humidity of the highway structure layers were monitored in winter, and the mass transfer of water in the gaseous state due to the negative pressure of cryosuction in the frozen layers was also considered. It was determined that mass transfer of water in the form of steam 1.44 10⁻⁴ g/h per 1 dm3 of soil at temperature fluctuations of -5-8 °C. The rate of vapor passage towards the freezing front in the soil was 0.467 m/h. The freezing of the ground base continued for 132 days in the winter period of 2021-2022 in Astana with the formation of 456.72 g of ice due to the migration of water in a gaseous state in every 1 m3 of soil, which increases the humidity by 40 % or more and significantly reduces the bearing road capacity during the spring thaw. As a solution to the problem of water migration in the form of steam, it is proposed to introduce an additional layer of vapour barrier over the soil base at a depth of -60 cm.

Funder

Ministry of Education and Science of the Republic of Kazakhstan

Publisher

Technobius

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3