Flow Deflection between Guide Vanes in a Pump Turbine Operating in Pump Mode with a Slight Opening

Author:

Ji Qingfeng,Wu Guoying,Liao Weili,Fan HonggangORCID

Abstract

During the startup and shutdown processes of a reversible-pump turbine (RPT) working in pump mode, abnormal sounds and vibrations usually occur in the distributor when the guide vanes (GVs) are at a slight opening (max opening of about 6%). The objective of this paper is to apply a three-dimensional numerical CFD method to study the unsteady flow behavior in the guide vane region of a pump turbine operating in pump mode. The dynamic meshing technique is introduced to simulate the startup and shutdown processes, and it is shown to be critical in accurately capturing the details of the flow pattern variations. In addition, the RNG k-epsilon two-equation turbulence model is applied and the governing equations are discretized with the finite volume method. Moreover, the boundary conditions are set through the calculation of the transient process of the power station. The results show that the main flow between the GVs is deflected during the startup and shutdown processes. In the shutdown process, the deflection occurs when the guide vane opening (GVO) is between 1.99 and 5.32 degrees, on average. In the startup process, the deflection occurs when the GVO is between 2.83 and 4.11 degrees, on average. In these processes, the velocity field and pressure field change dramatically. Simultaneously, the hydraulic torque (HT) on the GVs has a sharp change. The abrupt change in the HT leads to vibrations and abnormal sounds.

Funder

National Natural Science Foundation of China

State Key Laboratory of Hydro science and Hydraulic Engineering

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3