Unstable Characteristics and Rotating Stall in Turbine Brake Operation of Pump-Turbines

Author:

Widmer Christian1,Staubli Thomas1,Ledergerber Nathan1

Affiliation:

1. Hochschule Luzern, Technik & Architektur, Technikumstrasse 21, CH-6048 Horw, Switzerland

Abstract

Reversible pump-turbines are versatile in the electricity market since they can be switched between pump and turbine operation within a few minutes. The emphasis on the design of the more sensitive pump flow however often leads to stability problems in no load or turbine brake operation. Unstable characteristics can be responsible for hydraulic system oscillations in these operating points. The cause of the unstable characteristics can be found in the blocking effect of either stationary vortex formation or rotating stall. The so-called unstable characteristic in turbine brake operation is defined by the change of sign of the slope of the head curve. This change of sign or “S-shape” can be traced back to flow recirculation and vortex formation within the runner and the vaneless space between runner and guide vanes. When approaching part load from sound turbine flow the vortices initially develop and collapse again. This unsteady vortex formation induces periodical pressure fluctuations. In the turbine brake operation at small guide vane openings the vortices increase in intensity, stabilize and circumferentially block the flow passages. This stationary vortex formation is associated with a total pressure rise over the machine and leads to the slope change of the characteristic. Rotating stall is a flow instability which extends from the runner, the vaneless space to the guide and the stay vane channels at large guide vane openings. A certain number of channels is blocked (rotating stall cell) while the other channels comprise sound flow. Due to a momentum exchange between rotor and stator at the front and the rear cell boundary, the cell is rotating with subsynchronous frequency of about 60 percent of the rotational speed for the investigated pump-turbine (nq = 45). The enforced rotating pressure distributions in the vaneless space lead to large dynamic radial forces on the runner. The mechanisms leading to stationary vortex formation and rotating stall were analyzed with a pump-turbine model by the means of numerical simulations and test rig measurements. It was found that stationary vortex formation and rotating stall have initially the same physical cause, but it depends on the mean convective acceleration within the guide vane channels, whether the vortex formations will rotate or not. Both phenomena lead to an unstable characteristic.

Publisher

ASME International

Subject

Mechanical Engineering

Reference16 articles.

1. Unstable Operation of High-Head Reversible Pump-Turbines;Pejovic

2. Stability of Pump-Turbines During Transient Operation;Martin

3. Instability of Pump-Turbines with S-Shaped Characteristics;Martin

4. Starting Pump-Turbines with Unstable Characteristics;Staubli

5. Unstable Pump-Turbine Characteristics and their Interaction with Hydraulic Systems;Widmer

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3