Numerical Investigation of the Flow Regime in the Vanes and the Torsional Self-Excited Vibration of Guide Vane in the Pump Mode of a Reversible Pump-Turbine

Author:

Liang Quanwei,Kang WenzheORCID,Zhou Lingjiu,Wang Zhengwei

Abstract

Guide vanes (GVs) are installed between the runner and the stay vanes for flow guidance and discharge regulation in reversible pump-turbines. The unstable torsional self-excited vibration of the guide vane (GV) may occur when running at small guide vane opening angles during the transient operations involving pump flow. In addition, the double-stage radial vanes may induce complex flow in the vanes and influence the stability of torsional self-excited vibration of the guide vane. In this study, numerical simulations were conducted at small guide vane opening angles in pump mode for two different guide vanes based on the three-dimensional computational fluid dynamics (CFD) method. The flow regime with a deflection was formed on the trailing edge with a circle in the vaneless region that rotated reversely against the runner rotation when operating at smaller guide vane opening angles for both of the two guide vanes. Based on this, the coupling simulations based on the CFD method with a single-degree-of-freedom (1DOF) oscillator were carried out under these operating conditions. Two flow types were formed at small opening angles when adopting different inlet boundary conditions. The results showed the flow regime with a deflection on the trailing edge may aggravate the instability of torsional vibration when applied as an initial flow field. Moreover, the vibration instability of the torsional self-excitation for two guide vanes was analyzed, showing that modifying the profile of guide vane airfoil is an efficient and reliable approach for weakening the torsional vibration instability.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3