Systematic Studies on the Antioxidant Capacity and Volatile Compound Profile of Yellow Mealworm Larvae (T. molitor L.) under Different Drying Regimes

Author:

Keil ClaudiaORCID,Grebenteuch SandraORCID,Kröncke NinaORCID,Kulow Fenja,Pfeif Sebastian,Kanzler ClemensORCID,Rohn SaschaORCID,Boeck Georg,Benning Rainer,Haase HajoORCID

Abstract

The yellow mealworm (Tenebrio molitor L., Coleoptera: Tenebrionidae) is an edible insect and due to its ubiquitous occurrence and the frequency of consumption, a promising candidate for the cultivation and production on an industrial scale. Moreover, it is the first insect to be approved by EFSA 2021 following the Novel Food Regulation. Industrial production of mealworms necessitates optimized processing techniques, where drying as the first postharvest procedure is of utmost importance for the quality of the final product. The focus of the present study was to analyse the chemical composition, antioxidant capacity, volatile compound profile and colouring of mealworm larvae dried in various regimes (freeze-drying, microwave drying, infrared drying, rack-oven drying and high-frequency drying). Proximate composition and fatty acid profile were similar for all dried larvae. Freeze dried larvae were predominantly marked by lipid oxidation with significantly higher peroxide values, secondary/tertiary oxidation products in the headspace GC-MS profiles and lower antioxidant capacity. High-temperature treatment in the rack oven—and to some extent also infrared or microwave drying—led to mealworm larvae darkening and the appearance of volatile Maillard secondary products such as 2-methylpropanoic acid, 2-/3-methylbutanoic acid and alkylpyrazines. High-frequency drying as a new emerging technology in insect processing was the most cost-effective method with energy costs of solely 0.09 Є/kg T. molitor L. leading to final larval material characterized by both lipid oxidation and nonenzymatic Maillard-browning.

Publisher

MDPI AG

Subject

Insect Science

Reference88 articles.

1. United Nations (2019). World Population Prospects 2019.

2. Nutritional and greenhouse gas impacts of removing animals from US agriculture;Proc. Natl. Acad. Sci. USA,2017

3. Insect Food Products in the Western World: Assessing the Potential of a New “Green” Market;Ann. Entomol. Soc. Am.,2019

4. Alexandratos, N., and Bruinsma, J. (2012). World Agriculture Towards 2030/2050: The 2012 Revision, Food and Agriculture Organization of the UN. ESA Working Paper.

5. Causing confusion in the debate about the transition toward amore plant-based diet;Proc. Natl. Acad. Sci. USA,2018

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3