Accurate Retrieval of the Whole Flood Process from Occurrence to Recession Based on GPS Original CNR, Fitted CNR, and Seamless CNR Series

Author:

Tong Zhifeng1,Su Mingkun1,Zheng Fu2,Shang Junna1,Wu Juntao1,Shen Xiaoliang1,Chang Xin3

Affiliation:

1. Communication Engineering School, Hangzhou Dianzi University, Hangzhou 310005, China

2. School of Electronic Information Engineering, Beihang University, Beijing 100191, China

3. School of Geodesy and Geomatics, Wuhan University, Wuhan 430072, China

Abstract

The CNR (Carrier-to-Noise Ratio) of GPS (Global Positioning System) satellites is highly relevant to the multipath error. The multipath error is more serious in the flood environment since the reflection and diffraction coefficients of water are much higher compared to dry soil. Thus, the amplitude of CNR will decrease in the flood environment. In this study, the relationship between multipath error, flooding, and CNR is introduced in theory. Then, by using the characteristic of the orbital repetition period, the stability of CNR between 2 adjacent days in a static observation environment is demonstrated by 32 MGEX (Multi-GNSS Experiment) stations in different latitude and longitude regions of the world. The results show that the average RMS of different CNRs between two adjacent days is only about 0.62 dB-Hz. In addition, the correlation coefficient of CNRs between two adjacent days is analyzed. The correlation coefficient of the original signal CNR is 0.997. Moreover, after mitigating the influence of random noise and lower CNR, the correlation coefficients of the fitted CNRs larger than 40 dB-Hz can reach 0.999. Thus, based on the fluctuation in original CNR, fitted CNR, and seamless series characteristics of CNR, the whole flood process from occurrence to recession can be retrieved. A flood that occurred in Zhengzhou City, China, from DOY 200 to DOY 202, 2021 is used to demonstrate the process of retrieval. The experimental results indicate that the flood appeared at about 15:30 pm on DOY 200, reached a peak at approximately 8:30 am on DOY 202, and totally subsided at about 10:00 am on DOY 202. In conclusion, the CNR can be effectively used to retrieve the whole process of the flood, which lays a foundation for researching flood detection and warning based on GPS satellites.

Funder

Zhejiang Provincial Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3