An Urban Flooding Index for Unsupervised Inundated Urban Area Detection Using Sentinel-1 Polarimetric SAR Images

Author:

Zhang HuiORCID,Qi Zhixin,Li Xia,Chen Yimin,Wang XianweiORCID,He Yingqing

Abstract

Urban flooding causes a variation in radar return from urban areas. However, such variation has not been thoroughly examined for different polarizations because of the lack of polarimetric SAR (PolSAR) images and ground truth data simultaneously collected over flooded urban areas. This condition hinders not only the understanding of the effect mechanism of urban flooding under different polarizations but also the development of advanced methods that could improve the accuracy of inundated urban area detection. Using Sentinel-1 PolSAR and Jilin-1 high-resolution optical images acquired on the same day over flooded urban areas in Golestan, Iran, this study investigated the characteristics and mechanisms of the radar return changes induced by urban flooding under different polarizations and proposed a new method for unsupervised inundated urban area detection. This study found that urban flooding caused a backscattering coefficient increase (BCI) and interferometric coherence decrease (ICD) in VV and VH polarizations. Furthermore, VV polarization was more sensitive to the BCI and ICD than VH polarization. In light of these findings, the ratio between the BCI and ICD was defined as an urban flooding index (UFI), and the UFI in VV polarization was used for the unsupervised detection of flooded urban areas. The overall accuracy, detection accuracy, and false alarm rate attained by the UFI-based method were 96.93%, 91.09%, and 0.95%, respectively. Compared with the conventional unsupervised method based on the ICD and that based on the fusion of backscattering coefficients and interferometric coherences (FBI), the UFI-based method achieved higher overall accuracy. The performance of VV was evaluated and compared to that of VH in the flooded urban area detection using the UFI-, ICD-, and FBI-based methods, respectively. VV polarization produced higher overall accuracy than VH polarization in all the methods, especially in the UFI-based method. By using VV instead of VH polarization, the UFI-based method improved the detection accuracy by 38.16%. These results indicated that the UFI-based method improved flooded urban area detection by synergizing the BCI and ICD in VV polarization.

Funder

Ministry of Science and Technology of the People’s Republic of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3