Abstract
Rapid flood mapping is crucial in hazard evaluation and forecasting, especially in the early stage of hazards. Synthetic aperture radar (SAR) images are able to penetrate clouds and heavy rainfall, which is of special importance for flood mapping. However, change detection is a key part and the threshold selection is very complex in flood mapping with SAR. In this paper, a novel approach is proposed to rapidly map flood regions and estimate the flood degree, avoiding the critical step of thresholding. It converts the change detection of thresholds to land cover backscatter classifications. Sentinel-1 SAR images are used to get the land cover backscatter classifications with the help of Sentinel-2 optical images using a supervised classifier. A pixel-based change detection is used for change detection. Backscatter characteristics and variation rules of different ground objects are essential prior knowledge for flood analysis. SAR image classifications of pre-flood and flooding periods both take the same input to make sense of the change detection between them. This method avoids the inaccuracy caused by a single threshold. A case study in Shouguang is tested by this new method, which is compared with the flood map extracted by Otsu thresholding and normalized difference water index (NDWI) methods. The results show that our approach can identify the flood beneath vegetation well. Moreover, all required data and data processing are simple, so it can be popularized in rapid flooding mapping in early disaster relief.
Funder
Startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology
Subject
General Earth and Planetary Sciences
Cited by
78 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献