A Machine Learning Approach for Mapping Chlorophyll Fluorescence at Inland Wetlands

Author:

Bartold Maciej1ORCID,Kluczek Marcin12ORCID

Affiliation:

1. Remote Sensing Centre, Institute of Geodesy and Cartography, 27 Modzelewskiego St., 02-679 Warszawa, Poland

2. Department of Geoinformatics, Cartography and Remote Sensing, Chair of Geomatics and Information Systems, Faculty of Geography and Regional Studies, University of Warsaw, 00-927 Warszawa, Poland

Abstract

Wetlands are a critical component of the landscape for climate mitigation, adaptation, biodiversity, and human health and prosperity. Keeping an eye on wetland vegetation is crucial due to it playing a major role in the planet’s carbon cycle and ecosystem management. By measuring the chlorophyll fluorescence (ChF) emitted by plants, we can get a precise understanding of the current state and photosynthetic activity. In this study, we applied the Extreme Gradient Boost (XGBoost) algorithm to map ChF in the Biebrza Valley, which has a unique ecosystem in Europe for peatlands, as well as highly diversified flora and fauna. Our results revealed the advantages of using a set of classifiers derived from EO Sentinel-2 (S-2) satellite image mosaics to accurately map the spatio-temporal distribution of ChF in a terrestrial landscape. The validation proved that the XGBoost algorithm is quite accurate in estimating ChF with a good determination of 0.71 and least bias of 0.012. The precision of chlorophyll fluorescence measurements is reliant upon determining the optimal S-2 satellite overpass time, which is influenced by the developmental stage of the plants at various points during the growing season. Finally, the model performance results indicated that biophysical factors are characterized by greenness- and leaf-pigment-related spectral indices. However, utilizing vegetation indices based on extended periods of remote sensing data that better capture land phenology features can improve the accuracy of mapping chlorophyll fluorescence.

Funder

National Science Centre

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3