Probabilistic Modeling of Motion Blur for Time-of-Flight Sensors

Author:

Rodriguez BryanORCID,Zhang XinxiangORCID,Rajan Dinesh

Abstract

Synthetically creating motion blur in two-dimensional (2D) images is a well-understood process and has been used in image processing for developing deblurring systems. There are no well-established techniques for synthetically generating arbitrary motion blur within three-dimensional (3D) images, such as depth maps and point clouds since their behavior is not as well understood. As a prerequisite, we have previously developed a method for generating synthetic motion blur in a plane that is parallel to the sensor detector plane. In this work, as a major extension, we generalize our previously developed framework for synthetically generating linear and radial motion blur along planes that are at arbitrary angles with respect to the sensor detector plane. Our framework accurately captures the behavior of the real motion blur that is encountered using a Time-of-Flight (ToF) sensor. This work uses a probabilistic model that predicts the location of invalid pixels that are typically present within depth maps that contain real motion blur. More specifically, the probabilistic model considers different angles of motion paths and the velocity of an object with respect to the image plane of a ToF sensor. Extensive experimental results are shown that demonstrate how our framework can be applied to synthetically create radial, linear, and combined radial-linear motion blur. We quantify the accuracy of the synthetic generation method by comparing the resulting synthetic depth map to the experimentally captured depth map with motion. Our results indicate that our framework achieves an average Boundary F1 (BF) score of 0.7192 for invalid pixels for synthetic radial motion blur, an average BF score of 0.8778 for synthetic linear motion blur, and an average BF score of 0.62 for synthetic combined radial-linear motion blur.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3