Velocity Estimation from LiDAR Sensors Motion Distortion Effect

Author:

Haas Lukas12ORCID,Haider Arsalan12ORCID,Kastner Ludwig1ORCID,Zeh Thomas1,Poguntke Tim1,Kuba Matthias3,Schardt Michael4,Jakobi Martin2,Koch Alexander W.3

Affiliation:

1. IFM—Institute for Driver Assistance Systems and Connected Mobility, Kempten University of Applied Sciences, Junkerstraße 1A, 87734 Benningen, Germany

2. Institute for Measurement Systems and Sensor Technology, Technical University of Munich, Theresienstr. 90, 80333 Munich, Germany

3. Faculty of Electrical Engineering, Kempten University of Applied Sciences, Bahnhofstraße 61, 87435 Kempten, Germany

4. Blickfeld GmbH, Barthstr. 12, 80339 Munich, Germany

Abstract

Many modern automated vehicle sensor systems use light detection and ranging (LiDAR) sensors. The prevailing technology is scanning LiDAR, where a collimated laser beam illuminates objects sequentially point-by-point to capture 3D range data. In current systems, the point clouds from the LiDAR sensors are mainly used for object detection. To estimate the velocity of an object of interest (OoI) in the point cloud, the tracking of the object or sensor data fusion is needed. Scanning LiDAR sensors show the motion distortion effect, which occurs when objects have a relative velocity to the sensor. Often, this effect is filtered, by using sensor data fusion, to use an undistorted point cloud for object detection. In this study, we developed a method using an artificial neural network to estimate an object’s velocity and direction of motion in the sensor’s field of view (FoV) based on the motion distortion effect without any sensor data fusion. This network was trained and evaluated with a synthetic dataset featuring the motion distortion effect. With the method presented in this paper, one can estimate the velocity and direction of an OoI that moves independently from the sensor from a single point cloud using only one single sensor. The method achieves a root mean squared error (RMSE) of 0.1187 m s−1 and a two-sigma confidence interval of [−0.0008 m s−1, 0.0017 m s−1] for the axis-wise estimation of an object’s relative velocity, and an RMSE of 0.0815 m s−1 and a two-sigma confidence interval of [0.0138 m s−1, 0.0170 m s−1] for the estimation of the resultant velocity. The extracted velocity information (4D-LiDAR) is available for motion prediction and object tracking and can lead to more reliable velocity data due to more redundancy for sensor data fusion.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference35 articles.

1. Comparative Analysis of Radar and Lidar Technologies for Automotive Applications;Bilik;IEEE Intell. Transp. Syst. Mag.,2023

2. (2023, June 06). LiPeZ-Entwicklung Neuartiger Verfahren der Objekterkennung und -Klassifizierung aus Punktwolkedaten von LiDAR Sensoren zur Erkennung und Zählung von Personen in Menschenmengen. Available online: https://forschung.hs-kempten.de/de/forschungsprojekt/367-lipez.

3. Müller, M. (2023, July 17). Time-of-Flight vs. FMCW: Das große Duell. Available online: https://www.blickfeld.com/de/blog/time-of-flight-vs-fmcw/.

4. Liesner, L. (2017). Automatisierte Funktionsoptimierung von Adaptive Cruise Control, Shaker Verlag.

5. Petit, F. (2023, June 20). Entmystifizierung von LiDAR—Ein Überblick über die LiDAR-Technologie. Available online: https://www.blickfeld.com/de/blog/was-ist-lidar/#:~:text=Wie%20funktioniert%20die%20Technologie%3F,zum%20Detektor%20des%20Sensors%20zur%C3%BCckkehren.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis on 2D Mapping for Mobile Robotonthesharped Edge Area;2024 9th International Conference on Mechatronics Engineering (ICOM);2024-08-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3