Dimensioning Cuboid and Cylindrical Objects Using Only Noisy and Partially Observed Time-of-Flight Data

Author:

Rodriguez Bryan1ORCID,Rangarajan Prasanna1,Zhang Xinxiang1ORCID,Rajan Dinesh1

Affiliation:

1. Department of Electrical and Computer Engineering, Lyle School of Engineering, Southern Methodist University, Dallas, TX 75205, USA

Abstract

One of the challenges of using Time-of-Flight (ToF) sensors for dimensioning objects is that the depth information suffers from issues such as low resolution, self-occlusions, noise, and multipath interference, which distort the shape and size of objects. In this work, we successfully apply a superquadric fitting framework for dimensioning cuboid and cylindrical objects from point cloud data generated using a ToF sensor. Our work demonstrates that an average error of less than 1 cm is possible for a box with the largest dimension of about 30 cm and a cylinder with the largest dimension of about 20 cm that are each placed 1.5 m from a ToF sensor. We also quantify the performance of dimensioning objects using various object orientations, ground plane surfaces, and model fitting methods. For cuboid objects, our results show that the proposed superquadric fitting framework is able to achieve absolute dimensioning errors between 4% and 9% using the bounding technique and between 8% and 15% using the mirroring technique across all tested surfaces. For cylindrical objects, our results show that the proposed superquadric fitting framework is able to achieve absolute dimensioning errors between 2.97% and 6.61% when the object is in a horizontal orientation and between 8.01% and 13.13% when the object is in a vertical orientation using the bounding technique across all tested surfaces.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3