The Icing Distribution Characteristics Research of Tower Cross Beam of Long-Span Bridge by Numerical Simulation

Author:

Yang Zhi-YongORCID,Zhan Xiang,Zhou Xin-Long,Xiao Heng-Lin,Pei Yao-Yao

Abstract

The cross beam of a long-span bridge will freeze in low temperature. When the temperature rises, the ice on the cross beam will thaw and fall off. If the ice is too heavy, it may cause vehicle damage and casualty. In order to reduce the risk of falling ice, a scale model of the cross beam was taken as an example, and a kind of numerical simulation method is presented to study the icing distribution characteristics on surface of the cross beam. This paper simulates the ice accretions process of the cross beam by Fluent module and FENSAP-ICE module of ANSYS and investigates the influence of wind and temperature in the process. This is a new numerical simulation method for studying ice accretions of buildings. The results indicate that water freezes mainly on the windward surface, and the thicker ice is near the top and bottom edge of windward surface. According to the results of numerical simulation, a measure of ice melting based on electric heating method is proposed in this paper, and the feasibility and effectiveness of this method are verified by numerical simulation. The results show that the icing distribution characteristics are accord with the fact and the ice-melting measure is feasible and effective.

Funder

the Major Technological Innovation Projects of Hubei

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3