Wind-Induced Response of Inclined and Yawed Ice-Accreted Stay Cable Models

Author:

Cao Songyu1,Jalali Himan Hojat2ORCID,Dragomirescu Elena3ORCID

Affiliation:

1. Key Laboratory of Transportation Tunnel Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, Sichuan, China

2. Civil Engineering Department, University of Texas at Arlington, 425 Nedderman Hall, 416 Yates St., Arlington, TX 76019, USA

3. Faculty of Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON K1N 6N5, Canada

Abstract

During the past decades, wind-induced vibrations of bridge stay cables were reported to occur under various incipient conditions. The ice formation on stay cables is one of these conditions, which causes the ice-accreted stay cables to alter their cross section geometry, thus modifying their aerodynamic characteristics. Wind tunnel tests and several CFD simulations were performed for ice-accreted inclined bridge stay cables with two ice-accretion profiles dimensions, 0.5D and 1D, where D is the diameter of the cable. Wind-induced vibrations were analyzed experimentally for cable models with yaw inclination angles of 0°, 30°, and 60° and vertical inclination angles of 0° and 15°, for Reynolds numbers of up to 4 × 105. The aerodynamic drag and lift coefficients of the cable models and the pressure coefficients were determined from the CFD-LES simulations. The experimental results indicated that the vertical and torsional vibrations of the ice-accreted stay cables increased with the increase of the vertical and yaw angles. Also, higher vertical and torsional vibration amplitudes were measured for the case with larger ice thickness, indicating the effect of the ice accretion profile on the cable wind-induced response.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3