Affiliation:
1. School of Civil Engineering and Environment, Hubei University of Technology, Wuhan 430068, China
2. Xiangyang Industrial Institute, Hubei University of Technology, Xiangyang 441100, China
Abstract
The icing of bridge pylon crossbeams is a problem that could pose a serious threat to traffic during a cold winter. However, little research has been carried out on the problem and few corresponding countermeasures have been provided. This paper aims to propose a novel heating system, and to study the feasibility of beam de-icing and the related de-icing strategies so as to provide a reference scheme for the practical application of beam de-icing. A number of icing and de-icing tests were carried out on a scale model of Wuhan Yangtze River Second Bridge in the cold chamber. The de-icing effects of the beam in different environments and different de-icing methods were compared, and the recommended pre-heating time, applicable environment range, and heating method were given. The results of the model experiments show that pre-heating the heating system can prevent the surface of the beam from freezing and that the anti-icing method is more suitable for beam de-icing than the passive de-icing method. When the pre-heating time exceeds 7 min, the entire anti-icing process can be ice-free. When the wind velocity exceeds 5 m/s, it is safer to shut down the heating system, and using the passive de-icing method at the end of the icing can also eliminate the hidden danger of beam icing.
Funder
National Natural Science Foundation of China
Key Research and Development Program of Hubei Province
Knowledge Innovation Project of Wuhan
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science