Visual Navigation Algorithms for Aircraft Fusing Neural Networks in Denial Environments

Author:

Gao Yang1ORCID,Wang Yue1,Tian Lingyun1ORCID,Li Dongguang1,Wang Fenming1

Affiliation:

1. School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China

Abstract

A lightweight aircraft visual navigation algorithm that fuses neural networks is proposed to address the limited computing power issue during the offline operation of aircraft edge computing platforms in satellite-denied environments with complex working scenarios. This algorithm utilizes object detection algorithms to label dynamic objects within complex scenes and performs dynamic feature point elimination to enhance the feature point extraction quality, thereby improving navigation accuracy. The algorithm was validated using an aircraft edge computing platform, and comparisons were made with existing methods through experiments conducted on the TUM public dataset and physical flight experiments. The experimental results show that the proposed algorithm not only improves the navigation accuracy but also has high robustness compared with the monocular ORB-SLAM2 method under the premise of satisfying the real-time operation of the system.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3