Abstract
The path-following control of the parafoil system is essential for executing missions, such as accurate homing and delivery. In this paper, the lateral path-following control of the parafoil system is studied. First, considering the relative motion between the parafoil canopy and the payload, an eight-degree-of-freedom (DOF) model of the parafoil system is constructed. Then, a guidance law containing the position deviation and heading angle deviation is proposed. Moreover, a linear active disturbance rejection controller (LADRC) is designed based on the guidance law to allow the parafoil system to track the desired path under internal unmodeled dynamics or external environmental disturbances. For the adaptive tuning of the controller parameters, a deep Q-network (DQN) is applied to the LADRC-based path-following control system, and the controller parameters can be adjusted in real time according to the system’s states. Finally, the effectiveness of the proposed method is applied to a parafoil system following circular and straight paths in an environment with wind disturbances. The simulation results show that the proposed method is an effective means to realize the lateral path-following control of the parafoil system, and it can also promote the development of intelligent controllers.
Funder
National Natural Science Foundation of China
National Key Research and Development Project
Key Technologies Research and Development Program of Tianjin
China Postdoctoral Science Foundation
Tianjin Postgraduate Research and Innovation
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献