A Soft-Voting Ensemble Based Co-Training Scheme Using Static Selection for Binary Classification Problems

Author:

Karlos StamatisORCID,Kostopoulos Georgios,Kotsiantis SotirisORCID

Abstract

In recent years, a forward-looking subfield of machine learning has emerged with important applications in a variety of scientific fields. Semi-supervised learning is increasingly being recognized as a burgeoning area embracing a plethora of efficient methods and algorithms seeking to exploit a small pool of labeled examples together with a large pool of unlabeled ones in the most efficient way. Co-training is a representative semi-supervised classification algorithm originally based on the assumption that each example can be described by two distinct feature sets, usually referred to as views. Since such an assumption can hardly be met in real world problems, several variants of the co-training algorithm have been proposed dealing with the absence or existence of a naturally two-view feature split. In this context, a Static Selection Ensemble-based co-training scheme operating under a random feature split strategy is outlined regarding binary classification problems, where the type of the base ensemble learner is a soft-Voting one composed of two participants. Ensemble methods are commonly used to boost the predictive performance of learning models by using a set of different classifiers, while the Static Ensemble Selection approach seeks to find the most suitable structure of ensemble classifier based on a specific criterion through a pool of candidate classifiers. The efficacy of the proposed scheme is verified through several experiments on a plethora of benchmark datasets as statistically confirmed by the Friedman Aligned Ranks non-parametric test over the behavior of classification accuracy, F1-score, and Area Under Curve metrics.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3