A Segmentation-Based Automated Corneal Ulcer Grading System for Ocular Staining Images Using Deep Learning and Hough Circle Transform

Author:

Manawongsakul Dulyawat1,Patanukhom Karn2

Affiliation:

1. Data Science Consortium, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand

2. Department of Computer Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand

Abstract

Corneal ulcer is a prevalent ocular condition that requires ophthalmologists to diagnose, assess, and monitor symptoms. During examination, ophthalmologists must identify the corneal ulcer area and evaluate its severity by manually comparing ocular staining images with severity indices. However, manual assessment is time-consuming and may provide inconsistent results. Variations can occur with repeated evaluations of the same images or with grading among different evaluators. To address this problem, we propose an automated corneal ulcer grading system for ocular staining images based on deep learning techniques and the Hough Circle Transform. The algorithm is structured into two components for cornea segmentation and corneal ulcer segmentation. Initially, we apply a deep learning method combined with the Hough Circle Transform to segment cornea areas. Subsequently, we develop the corneal ulcer segmentation model using deep learning methods. In this phase, the predicted cornea areas are utilized as masks for training the corneal ulcer segmentation models during the learning phase. Finally, this algorithm uses the results from these two components to determine two outputs: (1) the percentage of the ulcerated area on the cornea, and (2) the severity degree of the corneal ulcer based on the Type–Grade (TG) grading standard. These methodologies aim to enhance diagnostic efficiency across two key aspects: (1) ensuring consistency by delivering uniform and dependable results, and (2) enhancing robustness by effectively handling variations in eye size. In this research, our proposed method is evaluated using the SUSTech-SYSU public dataset, achieving an Intersection over Union of 89.23% for cornea segmentation and 82.94% for corneal ulcer segmentation, along with a Mean Absolute Error of 2.51% for determining the percentage of the ulcerated area on the cornea and an Accuracy of 86.15% for severity grading.

Funder

Chiang Mai University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3