Predicting novel mosquito-associated viruses from metatranscriptomic dark matter

Author:

de Andrade Amanda Araújo Serrão1ORCID,Brustolini Otávio1ORCID,Grivet Marco2ORCID,Schrago Carlos G3ORCID,Vasconcelos Ana Tereza Ribeiro1ORCID

Affiliation:

1. Bioinformatics Laboratory (LABINFO), National Laboratory for Scientific Computing , Petrópolis  25651-076 , Brazil

2. Pontifical Catholic University of Rio de Janeiro , Rio de Janeiro  22453-900 , Brazil

3. Federal University of Rio de Janeiro , Rio de Janeiro  21941-913 , Brazil

Abstract

Abstract The exponential growth of metatranscriptomic studies dedicated to arboviral surveillance in mosquitoes has yielded an unprecedented volume of unclassified sequences referred to as the virome dark matter. Mosquito-associated viruses are classified based on their host range into Mosquito-specific viruses (MSV) or Arboviruses. While MSV replication is restricted to mosquito cells, Arboviruses infect both mosquito vectors and vertebrate hosts. We developed the MosViR pipeline designed to identify complex genomic discriminatory patterns for predicting novel MSV or Arboviruses from viral contigs as short as 500 bp. The pipeline combines the predicted probability score from multiple predictive models, ensuring a robust classification with Area Under ROC (AUC) values exceeding 0.99 for test datasets. To assess the practical utility of MosViR in actual cases, we conducted a comprehensive analysis of 24 published mosquito metatranscriptomic datasets. By mining this metatranscriptomic dark matter, we identified 605 novel mosquito-associated viruses, with eight putative novel Arboviruses exhibiting high probability scores. Our findings highlight the limitations of current homology-based identification methods and emphasize the potentially transformative impact of the MosViR pipeline in advancing the classification of mosquito-associated viruses. MosViR offers a powerful and highly accurate tool for arboviral surveillance and for elucidating the complexities of the mosquito RNA virome.

Funder

Carlos Chagas Filho Foundation for Research Support in Rio de Janeiro

Coordination for the Improvement of Higher Education Personnel

National Council for Scientific and Technological Development

FAPERJ

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3