Static and Flexural Fatigue Behavior of GFRP Pultruded Rebars

Author:

Barcikowski MichałORCID,Lesiuk GrzegorzORCID,Czechowski Karol,Duda SzymonORCID

Abstract

This paper presents the experimental results of composite rebars based on GFRP manufactured by a pultrusion system. The bending and radial compression strength of rods was determined. The elastic modulus of GFRP rebars is significantly lower than for steel rebars, while the static flexural properties are higher. The microstructure of the selected rebars was studied and discussed in light of the obtained results—failure processes such as the delamination and fibers fracture can be observed. The bending fatigue test was performed under a constant load amplitude sinusoidal waveform. All rebars were subjected to fatigue tests under the R = 0.1 condition. As a result, the S-N curve was obtained, and basic fatigue characteristics were determined. The fatigue mechanism of bar failure under bending was further analyzed using SEM microscopy. It is worth noting that the failure and fracture mechanism plays a crucial role as a material quality indicator in the manufacturing process. The main mechanism of failure under static and cyclic loading during the bending test is widely discussed in this paper. The results obtained from fatigue tests encourage further analysis. The diametral compression test reflects the weakest nature of the composite materials based on the interlaminar compressive strength. The proposed methodology allows us to invariantly describe the experimental transversal strength of the composite materials. Considering the expected durability of the structure, the failure mechanism is likely to significantly improve their fatigue behavior under the influence of cyclic bending. The reasonable direction of searching for reinforcements of composite structures should be the improvement of the bearing capacity of the outer layers. In comparison with steel rebars (fatigue tensile test), the obtained results for GFRP are comparable in the HCF regime. It is worth noting that in the near fatigue endurance regime (2–5 × 106 cycles) both rebars exhibit similar behavior.

Publisher

MDPI AG

Subject

General Materials Science

Reference36 articles.

1. Composite Rebars

2. ARMASTEK—Zastosowania Specjalne http://www.armastek.com.pl/zastosowania-specjalne

3. Customer Cases|Advantages of Fibreglass Profiles, Gratings and Planks|Fiberline https://fiberline.com/cases-construction/

4. Composite Alliance of Rhode Island http://ricomposites.com/wp-content/uploads/2016/07/Gremel-FRP-Rebar-for-Longer-Lasting-Infrastructure.pdf

5. ASTEC Soft-Eyes|Tunnel Breakthrough Made Easy Thanks to GFRP Rebar|Tunneling-Dextra https://www.dextragroup.com/activities/technical-solutions-for-construction/solutions/26-concrete-construction/composite-frp-reinforcement/57-astec-soft-eyes

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3