Affiliation:
1. School of Science, Technology and Engineering, University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, QLD 4556, Australia
Abstract
It is becoming accepted that glass-fibre-reinforced polymer (GFRP) is a credible and effective replacement for steel in reinforced concrete (RC) to meet structural requirements whilst addressing durability concerns posed by steel over the long term. A better understanding of the bond behaviour between GFRP and concrete is essential for reliably and efficiently designing concrete structures with reinforced GFRP bars. This paper presents a parametric study of the bond behaviour of GFRP bars to concrete where the effects of the length, diameter, concrete strength, concrete cover thickness and rebar surface morphology of GFRP bars were investigated via a series of pull-out tests. The test results indicate that the bond strength of GFRP bars is predominantly influenced by their surface morphology, embedment length and diameter. On the other hand, the effects of concrete strength and cover thickness appear to have a limited impact on the bond strengths of GFRP rebars to concrete. It is shown that ribbed GFRP bars exhibit the highest bond energy of 89.4 Nmm and an average bond strength of 11.9 MPa. Moreover, the analysis of failure modes indicated the unique effect of GFRP surface morphology on failure mode. It is shown that 100% of ribbed GFRP failed due to concrete split, while 85% of sand-coated bars experienced failure due to bar slip. This examination of failure modes and their corresponding bond strengths provides a unique perspective on the bond behaviour between GFRP bars and concrete.
Subject
Building and Construction,Civil and Structural Engineering,Architecture
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献