Author:
Mu Rongjun,Sun Hongchi,Li Yuntian,Cui Naigang
Abstract
Celestial navigation is required to improve the long-term accuracy preservation capability of near space vehicles. However, it takes a long time for traditional celestial navigation methods to identify the star map, which limits the improvement of the dynamic response ability. Meanwhile, the aero-optical effects caused by the near space environment can lead to the colorization of measurement noise, which affects the accuracy of the integrated navigation filter. In this paper, an INS/CNS deeply integrated navigation method, which includes a deeply integrated model and a second-order state augmented H-infinity filter, is proposed to solve these problems. The INS/CNS deeply integrated navigation model optimizes the attitude based on the gray image error function, which can estimate the attitude without star identification. The second-order state augmented H-infinity filter uses the state augmentation algorithm to whiten the measurement noise caused by the aero-optical effect, which can effectively improve the estimation accuracy of the H-infinity filter in the near space environment. Simulation results show that the proposed INS/CNS deeply integrated navigation method can reduce the computational cost by 50%, while the attitude accuracy is kept within 10” (3 σ). The attitude root mean square of the second-order state augmented H-infinity filter does not exceed 5”, even when the parameter error increases to 50%, in the near space environment. Therefore, the INS/CNS deeply integrated navigation method can effectively improve the rapid response ability of the navigation system and the filtering accuracy in the near space environment, providing a reference for the future design of near space vehicle navigation systems.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献