INS/CNS Deeply Integrated Navigation Method of Near Space Vehicles

Author:

Mu Rongjun,Sun Hongchi,Li Yuntian,Cui Naigang

Abstract

Celestial navigation is required to improve the long-term accuracy preservation capability of near space vehicles. However, it takes a long time for traditional celestial navigation methods to identify the star map, which limits the improvement of the dynamic response ability. Meanwhile, the aero-optical effects caused by the near space environment can lead to the colorization of measurement noise, which affects the accuracy of the integrated navigation filter. In this paper, an INS/CNS deeply integrated navigation method, which includes a deeply integrated model and a second-order state augmented H-infinity filter, is proposed to solve these problems. The INS/CNS deeply integrated navigation model optimizes the attitude based on the gray image error function, which can estimate the attitude without star identification. The second-order state augmented H-infinity filter uses the state augmentation algorithm to whiten the measurement noise caused by the aero-optical effect, which can effectively improve the estimation accuracy of the H-infinity filter in the near space environment. Simulation results show that the proposed INS/CNS deeply integrated navigation method can reduce the computational cost by 50%, while the attitude accuracy is kept within 10” (3 σ). The attitude root mean square of the second-order state augmented H-infinity filter does not exceed 5”, even when the parameter error increases to 50%, in the near space environment. Therefore, the INS/CNS deeply integrated navigation method can effectively improve the rapid response ability of the navigation system and the filtering accuracy in the near space environment, providing a reference for the future design of near space vehicle navigation systems.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3