Cyclic Hardening and Fatigue Damage Features of 51CrV4 Steel for the Crossing Nose Design

Author:

Gomes Vítor1ORCID,Eck Sven2ORCID,De Jesus Abílio1ORCID

Affiliation:

1. FEUP Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal

2. MCL, Materials Center Leoben Forschung GmbH, 8700 Leoben, Austria

Abstract

A crossing nose is a component of railway infrastructure subject to very severe loading conditions. Depending on the severity of these loads, the occurrence of structural fatigue, severe plastic deformation, or rolling fatigue may occur. Under fatigue conditions with high plastic deformation, cyclic plasticity approaches, together with local plasticity models, become more viable for mechanical design. In this work, the fatigue behavior in strain-controlled conditions of 51CrV4 steel, applicable to the crossing nose component, was evaluated. In this investigation, both strain-life and energy-life approaches were considered for fatigue prediction analysis. The results were considered through obtaining a Ramberg-Osgood cyclic elasto-plastic curve. Since this component is subject to cyclic loading, even if spaced in time, the isotropic and kinematic cyclic hardening behavior of the Chaboche model was subsequently analyzed, considering a comparative approach between experimental data and the FEM. As a result, the material properties and finite element model parameters presented in this work can contribute to the enrichment of the literature on strain-life fatigue and cyclic plasticity, and they could be applied in mechanical designs with 51CrV4 steel components or used in other future analyses.

Funder

IN2TRACK2

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3