Author:
Hamarat Mehmet,Papaelias Mayorkinos,Kaewunruen Sakdirat
Abstract
AbstractRailway turnouts are essential in the train traffic route management for modern railways. Despite significant devotion to railway turnout research, one of their most common failures has not been thoroughly investigated, which is a fatigue over the turnout crossing nose. At the crossings, wheel-rail discontinuity imparts high-frequency high-magnitude forces, which are the source of fatigue failure over the crossing nose. In this study, a novel approach built on “Peridynamics” (PD) has been developed to obtain new insights into the fatigue cracks. A recent approach using “crack on mid-plane” has also been employed in this study to enhance the limited capability of Peridynamics. This paper is the world’s first to investigate fatigue failures over a crossing nose from fracture mechanics perspective. This paper also introduces a novel adaptive time-mapping method as an alternative to earlier time-mapping methods for fatigue models proposed in the open literature. The new model has been verified against both Finite Element Method and experimental data. It reveals that our new approach can simulate fatigue damage, particularly in mode I crack propagation. The study has provided important insights on the fatigue crack development, which is not possible before by existing Peridynamics fatigue model. The new approach on the basis of “adaptive time-mapping” and “crack on mid-plane” is demonstrated to be effective and efficient in PD simulations.
Funder
H2020 Marie Skłodowska-Curie Actions
Publisher
Springer Science and Business Media LLC
Reference67 articles.
1. Andersson, C. & Dahlberg, T. Wheel/rail impacts at a railway turnout crossing. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 212(2), 123–134 (1998).
2. Hamarat, M., Kaewunruen, S., Papaelias, M. & Silvast, M. New insights from multibody dynamic analyses of a turnout system under impact loads. Appl. Sci. 9(19), 4080 (2019).
3. Hamarat, M., Papaelias, M., Silvast, M. & Kaewunruen, S. The effect of unsupported sleepers/bearers on dynamic phenomena of a railway turnout system under impact loads. Appl. Sci. 10(7), 2320 (2020).
4. Kaewunruen, S. Monitoring in-service performance of fibre-reinforced foamed urethane sleepers/bearers in railway urban turnout systems. Struct. Monit. Maint. 1(1), 131 (2014).
5. Kaewunruen, S. & Lian, Q. Digital twin aided sustainability-based lifecycle management for railway turnout systems. J. Clean. Prod. 228, 1537–1551 (2019).
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献