Accented Speech Recognition Based on End-to-End Domain Adversarial Training of Neural Networks

Author:

Na Hyeong-Ju,Park Jeong-SikORCID

Abstract

The performance of automatic speech recognition (ASR) may be degraded when accented speech is recognized because the speech has some linguistic differences from standard speech. Conventional accented speech recognition studies have utilized the accent embedding method, in which the accent embedding features are directly fed into the ASR network. Although the method improves the performance of accented speech recognition, it has some restrictions, such as increasing the computational costs. This study proposes an efficient method of training the ASR model for accented speech in a domain adversarial way based on the Domain Adversarial Neural Network (DANN). The DANN plays a role as a domain adaptation in which the training data and test data have different distributions. Thus, our approach is expected to construct a reliable ASR model for accented speech by reducing the distribution differences between accented speech and standard speech. DANN has three sub-networks: the feature extractor, the domain classifier, and the label predictor. To adjust the DANN for accented speech recognition, we constructed these three sub-networks independently, considering the characteristics of accented speech. In particular, we used an end-to-end framework based on Connectionist Temporal Classification (CTC) to develop the label predictor, a very important module that directly affects ASR results. To verify the efficiency of the proposed approach, we conducted several experiments of accented speech recognition for four English accents including Australian, Canadian, British (England), and Indian accents. The experimental results showed that the proposed DANN-based model outperformed the baseline model for all accents, indicating that the end-to-end domain adversarial training effectively reduced the distribution differences between accented speech and standard speech.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3