Towards a Corpus (and Language)-Independent Screening of Parkinson’s Disease from Voice and Speech through Domain Adaptation

Author:

Ibarra Emiro J.1ORCID,Arias-Londoño Julián D.2ORCID,Zañartu Matías1ORCID,Godino-Llorente Juan I.2ORCID

Affiliation:

1. Department of Electronic Engineering, Universidad Técnica Federico Santa María, Avenida España 1680, Casilla 110-V, Valparaíso 2390123, Chile

2. Escuela Técnica Superior de Ingeneiros de Telecomunicación, Universidad Politécnica de Madrid, Avda, Ciudad Universitaria, 30, 28040 Madrid, Spain

Abstract

End-to-end deep learning models have shown promising results for the automatic screening of Parkinson’s disease by voice and speech. However, these models often suffer degradation in their performance when applied to scenarios involving multiple corpora. In addition, they also show corpus-dependent clusterings. These facts indicate a lack of generalisation or the presence of certain shortcuts in the decision, and also suggest the need for developing new corpus-independent models. In this respect, this work explores the use of domain adversarial training as a viable strategy to develop models that retain their discriminative capacity to detect Parkinson’s disease across diverse datasets. The paper presents three deep learning architectures and their domain adversarial counterparts. The models were evaluated with sustained vowels and diadochokinetic recordings extracted from four corpora with different demographics, dialects or languages, and recording conditions. The results showed that the space distribution of the embedding features extracted by the domain adversarial networks exhibits a higher intra-class cohesion. This behaviour is supported by a decrease in the variability and inter-domain divergence computed within each class. The findings suggest that domain adversarial networks are able to learn the common characteristics present in Parkinsonian voice and speech, which are supposed to be corpus, and consequently, language independent. Overall, this effort provides evidence that domain adaptation techniques refine the existing end-to-end deep learning approaches for Parkinson’s disease detection from voice and speech, achieving more generalizable models.

Funder

Ministry of Economy and Competitiveness, Spain

Comunidad de Madrid, Spain. Chilean Research and Development Agency

Universidad Técnica Federico Santa María, DPP

Universidad Politécnica de Madrid

Publisher

MDPI AG

Subject

Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3