Language Model Using Neural Turing Machine Based on Localized Content-Based Addressing

Author:

Lee Donghyun,Park Jeong-SikORCID,Koo Myoung-Wan,Kim Ji-Hwan

Abstract

The performance of a long short-term memory (LSTM) recurrent neural network (RNN)-based language model has been improved on language model benchmarks. Although a recurrent layer has been widely used, previous studies showed that an LSTM RNN-based language model (LM) cannot overcome the limitation of the context length. To train LMs on longer sequences, attention mechanism-based models have recently been used. In this paper, we propose a LM using a neural Turing machine (NTM) architecture based on localized content-based addressing (LCA). The NTM architecture is one of the attention-based model. However, the NTM encounters a problem with content-based addressing because all memory addresses need to be accessed for calculating cosine similarities. To address this problem, we propose an LCA method. The LCA method searches for the maximum of all cosine similarities generated from all memory addresses. Next, a specific memory area including the selected memory address is normalized with the softmax function. The LCA method is applied to pre-trained NTM-based LM during the test stage. The proposed architecture is evaluated on Penn Treebank and enwik8 LM tasks. The experimental results indicate that the proposed approach outperforms the previous NTM architecture.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference37 articles.

1. A neural probabilistic language model;Bengio;J. Mach. Learn. Res.,2003

2. Long short-term memory;Hochreiter;Neural. Comput.,1997

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3