High Vacuum Packaging of MEMS Devices Containing Heterogeneous Discrete Components

Author:

Guo Ping,Meng Hongling,Dan LinORCID,Xu Hao,Zhao Jianye

Abstract

Vacuum packaging of Micro-electro-mechanical system (MEMS) devices is a hot topic for its advantages of improving performance and reducing power consumption. In this paper, the physics package of a chip scale atomic clock (CSAC), as a typical kind of MEMS device, is performed by vacuum packaging based on a systematic method proposed by us. The whole process, including low outgassing and thermal stable materials selection, prebaking for desorption, getter firing for absorption and solder reflow for vacuum sealing is introduced thoroughly. The thermogravimetric analysis or thermal gravimetric analysis (TGA) is used to analyze the thermal stability and desorption of materials. The leak rate of physics packages is measured to be less than 4 × 10−10 Pa·m3/s by helium leak detection. The residual gas pressure and composition in physics packages are analyzed after vacuum packaging. The results show a high vacuum ~0.1 Pa in the physics package. The frequency stability is improved from 4.68 × 10−11 to 1.07 × 10−11 @40,000 s. The presented method for high vacuum packaging is also applicable to other MEMS devices.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of Surface Cleaning Process on the Wafer Bonding of Silicon and Pyrex Glass;Journal of Inorganic and Organometallic Polymers and Materials;2023-01-12

2. Long-term Reliability Evaluation of Internal Atmosphere on Sealed Packaged MEMS Devices;2022 23rd International Conference on Electronic Packaging Technology (ICEPT);2022-08-10

3. Miniature capacitance diaphragm gauge for absolute vacuum measurement;Measurement;2022-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3