Abstract
Multiple sclerosis (MS) is common neurological disease of the central nervous system (CNS) affecting mostly young adults. Despite decades of studies, its etiology and pathogenesis are not fully unraveled and treatment is still insufficient. The vast majority of studies suggest that the immune system plays a major role in MS development. This is also supported by the effectiveness of currently available MS treatments that target immunocompetent cells. In this review, the role of antigen-presenting cells (APC) in MS development as well as the novel therapeutic options targeting those cells in MS are presented. It is known that in MS, peripheral self-antigen-specific immune cells are activated during antigen presentation process and they enter the CNS through the disrupted blood–brain barrier (BBB). Myelin-reactive CD4+ T-cells can be activated by dendritic cells, infiltrating macrophages, microglia cells, or B-cells, which all express MHC class II molecules. There are also suggestions that brain endothelial cells may act as non-professional APCs and present myelin-specific antigens with MHC class II. Similarly, astrocytes, the major glial cells in the CNS, were shown to act as non-professional APCs presenting myelin antigens to autoreactive T-cells. Several currently available MS drugs such as natalizumab, fingolimod, alemtuzumab, and ocrelizumab may modulate antigen presentation in MS. Another way to use this mechanism in MS treatment may be the usage of specific tolerogenic dendritic cells or the induction of tolerance to myelin antigens by peptide vaccines.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献