Author:
Schmitt Charlotte,Strazielle Nathalie,Ghersi-Egea Jean-François
Abstract
Abstract
Background
Cerebrospinal fluid (CSF) has been considered as a preferential pathway of circulation for immune cells during neuroimmune surveillance. In order to evaluate the involvement of CSF-filled spaces in the pathogenesis of experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis, we performed a time-course analysis of immune cell association with the CSF-containing ventricles, velae, and cisterns in two active models of this disease.
Methods
Guinea-pig spinal cord homogenate-induced EAE in rat and myelin oligodendrocyte glycoprotein-induced EAE in mouse were used. Leukocyte distribution and phenotypes were investigated by immunohistochemistry in serial sections of brain areas of interest, as well as in CSF withdrawn from rat. Immune cells associated with the choroid plexuses were quantified.
Results
Freund’s adjuvant-induced peripheral inflammation in the absence of brain antigen led to a subtle but definite increase in the number of myeloid cells in the extraventricular CSF spaces. In both rats and mice, EAE was characterized by a sustained and initial infiltration of lymphocytes and monocytes within forebrain/midbrain fluid-filled compartments such as the velum interpositum and ambient cisterns, and certain basal cisterns. Leukocytes further infiltrated periventricular and pericisternal parenchymal areas, along perivascular spaces or following a downward CSF-to-tissue gradient. Cells quantified in CSF sampled from rats included lymphocytes and neutrophils. The distinctive pattern of cell distribution suggests that both the choroid plexus and the vessels lying in the velae and cisterns are gates for early leukocyte entry in the central nervous system. B-cell infiltration observed in the mouse model was restricted to CSF-filled extraventricular compartments.
Conclusion
These results identified distinctive velae and cisterns of the forebrain and midbrain as preferential sites of immune cell homing following peripheral and early central inflammation and point to a role of CSF in directing brain invasion by immune cells during EAE.
Publisher
Springer Science and Business Media LLC
Subject
Cellular and Molecular Neuroscience,Neurology,Immunology,General Neuroscience
Reference38 articles.
1. Baxter AG: The origin and application of experimental autoimmune encephalomyelitis.
Nat Rev Immunol 2007, 7:904–912.
2. Lassmann H: Experimental models of multiple sclerosis.
Rev Neurol (Paris) 2007, 163:651–655.
3. Giunti D, Borsellino G, Benelli R, Marchese M, Capello E, Valle MT, Pedemonte E, Noonan D, Albini A, Bernardi G, Mancardi GL, Battistini L, Uccelli A: Phenotypic and functional analysis of T cells homing into the CSF of subjects with inflammatory diseases of the CNS.
J Leukoc Biol 2003, 73:584–590.
4. Charo IF, Ransohoff RM: The many roles of chemokines and chemokine receptors in inflammation.
N Engl J Med 2006, 354:610–621.
5. Allen IV, Kirk J: The anatomical and molecular pathology of multiple sclerosis. In Molecular biology of multiple sclerosis. Edited by: Russell WC. Wiley and Sons, Chichester; 1997:9–22.
Cited by
93 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献