Fuzzy Logic System for Classifying Multiple Sclerosis Patients as High, Medium, or Low Responders to Interferon-Beta
-
Published:2023-08-09
Issue:4
Volume:11
Page:109
-
ISSN:2227-7080
-
Container-title:Technologies
-
language:en
-
Short-container-title:Technologies
Author:
Ponce de Leon-Sanchez Edgar Rafael1ORCID, Mendiola-Santibañez Jorge Domingo2ORCID, Dominguez-Ramirez Omar Arturo3ORCID, Herrera-Navarro Ana Marcela1ORCID, Vazquez-Cervantes Alberto4ORCID, Jimenez-Hernandez Hugo1ORCID, Senties-Madrid Horacio5
Affiliation:
1. Facultad de Informática, Universidad Autónoma de Querétaro, Querétaro 76230, Mexico 2. Facultad de Ingeniería, Universidad Autónoma de Querétaro, Querétaro 76010, Mexico 3. Centro de Investigación en Tecnologías de Información y Sistemas, Universidad Autónoma del Estado de Hidalgo, Pachuca 42039, Mexico 4. Centro de Ingeniería y Desarrollo Industrial, Querétaro 76125, Mexico 5. Hospital HMG Coyoacán, Ciudad de Mexico 04380, Mexico
Abstract
Interferon-beta is one of the most widely prescribed disease-modifying therapies for multiple sclerosis patients. However, this treatment is only partially effective, and a significant proportion of patients do not respond to this drug. This paper proposes an alternative fuzzy logic system, based on the opinion of a neurology expert, to classify relapsing–remitting multiple sclerosis patients as high, medium, or low responders to interferon-beta. Also, a pipeline prediction model trained with biomarkers associated with interferon-beta responses is proposed, for predicting whether patients are potential candidates to be treated with this drug, in order to avoid ineffective therapies. The classification results showed that the fuzzy system presented 100% efficiency, compared to an unsupervised hierarchical clustering method (52%). So, the performance of the prediction model was evaluated, and 0.8 testing accuracy was achieved. Hence, a pipeline model, including data standardization, data compression, and a learning algorithm, could be a useful tool for getting reliable predictions about responses to interferon-beta.
Subject
Computer Science (miscellaneous)
Reference34 articles.
1. Revised diagnostic criteria of multiple sclerosis;Milo;Autoimmun. Rev.,2014 2. Martynova, E., Khaibullin, T., Salafutdinov, I., Markelova, M., Laikov, A., Lopukhov, L., Liu, R., Sahay, K., Goyal, M., and Baranwal, M. (2023). Seasonal Changes in Serum Metabolites in Multiple Sclerosis Relapse. Int. J. Mol. Sci., 24. 3. Tarlinton, R.E., Martynova, E., Rizvanov, A.A., Khaiboullina, S., and Verma, S. (2020). Role of viruses in the pathogenesis of multiple sclerosis. Viruses, 12. 4. Role of environmental factors in multiple sclerosis;Zarghami;Expert Rev. Neurother.,2021 5. Dominguez-Mozo, M.I., Perez-Perez, S., Villarrubia, N., Costa-Frossard, L., Fernandez-Velasco, J.I., Ortega-Madueño, I., Garcia-Martinez, M.A., Garcia-Calvo, E., Estevez, H., and Luque Garcia, J.L. (2021). Herpesvirus antibodies, vitamin d and short-chain fatty acids: Their correlation with cell subsets in multiple sclerosis patients and healthy controls. Cells, 10.
|
|