Fuzzy Logic System for Classifying Multiple Sclerosis Patients as High, Medium, or Low Responders to Interferon-Beta

Author:

Ponce de Leon-Sanchez Edgar Rafael1ORCID,Mendiola-Santibañez Jorge Domingo2ORCID,Dominguez-Ramirez Omar Arturo3ORCID,Herrera-Navarro Ana Marcela1ORCID,Vazquez-Cervantes Alberto4ORCID,Jimenez-Hernandez Hugo1ORCID,Senties-Madrid Horacio5

Affiliation:

1. Facultad de Informática, Universidad Autónoma de Querétaro, Querétaro 76230, Mexico

2. Facultad de Ingeniería, Universidad Autónoma de Querétaro, Querétaro 76010, Mexico

3. Centro de Investigación en Tecnologías de Información y Sistemas, Universidad Autónoma del Estado de Hidalgo, Pachuca 42039, Mexico

4. Centro de Ingeniería y Desarrollo Industrial, Querétaro 76125, Mexico

5. Hospital HMG Coyoacán, Ciudad de Mexico 04380, Mexico

Abstract

Interferon-beta is one of the most widely prescribed disease-modifying therapies for multiple sclerosis patients. However, this treatment is only partially effective, and a significant proportion of patients do not respond to this drug. This paper proposes an alternative fuzzy logic system, based on the opinion of a neurology expert, to classify relapsing–remitting multiple sclerosis patients as high, medium, or low responders to interferon-beta. Also, a pipeline prediction model trained with biomarkers associated with interferon-beta responses is proposed, for predicting whether patients are potential candidates to be treated with this drug, in order to avoid ineffective therapies. The classification results showed that the fuzzy system presented 100% efficiency, compared to an unsupervised hierarchical clustering method (52%). So, the performance of the prediction model was evaluated, and 0.8 testing accuracy was achieved. Hence, a pipeline model, including data standardization, data compression, and a learning algorithm, could be a useful tool for getting reliable predictions about responses to interferon-beta.

Publisher

MDPI AG

Subject

Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3