One- and Two-Step Kinetic Data Analysis Applied for Single and Co-Culture Growth of Staphylococcus aureus, Escherichia coli, and Lactic Acid Bacteria in Milk

Author:

Ačai Pavel,Valík ĽubomírORCID,Medveďová AlžbetaORCID

Abstract

The objective of this study was to compare one- and two-step kinetic data analysis approaches to describe the growth of Staphylococcus aureus, Escherichia coli, and lactic acid bacteria Fresco 1010 starter culture in milk under isothermal conditions between 10 and 37 °C. The primary Huang model (HM) and secondary square root model were applied to lag times and growth rates of each of the population. The one-step approach for single cultures data enabled the direct construction of a tertiary model combining primary and secondary models to determine parameters from all growth data, thus minimizing the transfer of errors from one model to another. The statistical indices showed a significant improvement in the prediction capability provided by this approach. Then, a one-step approach combining the primary Huang, Giménez, and Dalgaard model (H-GD) with the secondary square root model was used to simultaneously model the growth of the populations mentioned above in co-culture under the same conditions. Independent isothermal data sets were chosen for validation of the growth description of single cultures (HM) and co-culture (H-GD) using validation factors, including the bias (Bf) and accuracy (Af). For example, the values of Af for the one-step approach range from 1.17 to 1.20 and 1.04 to 1.08 for single cultures and co-culture, respectively, demonstrating high accuracy. Thus, this approach may be used for co-culture growth description in general or specifically, e.g., in various types of lactic acid fermentation, including artisanal cheese-making technology.

Funder

Slovak Research and Development Agency

Scientific Grant Agency of the Ministry of Education, Science, Research and Sports of the Slovak Republic and Slovak Academy of Sciences

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3