The Spread of the Japanese Beetle in a European Human-Dominated Landscape: High Anthropization Favors Colonization of Popillia japonica

Author:

Della Rocca FrancescaORCID,Milanesi PietroORCID

Abstract

The impact of invasive species is not limited to the loss of biodiversity; it also represents significant threats to agriculture on a global scale. The Japanese beetle Popillia japonica (native to Japan but an invasive agricultural pest in North America) recently occurred in the Po plain (Italy), one of the most cultivated areas in southern Europe. Thus, our aims were to identify (i) the main landscape predictors related to the occurrence of the Japanese beetle and (ii) the areas of potential invasion of the Japanese beetle in the two Northern Italian regions in which this invasive species currently occurs, Piedmont and Lombardy. Specifically, we combined Japanese beetle occurrences available in the citizen science online platform iNaturalist with high-resolution landscape predictors in an ensemble approach and averaged the results of Bayesian generalized linear and additive models developed with the integrated nested Laplace approximation (with stochastic partial differential equation). We found that the occurrence of the Japanese beetle was negatively related to the percentage of broadleaf forests and pastures, while it was positively related to sparse and dense human settlements as well as intensive crops. Moreover, the occurrence of the Japanese beetle increased in relation to the percentage of rice fields until a peak at around 50%. The Japanese beetle was likely to occur in 32.49% of our study area, corresponding to 16,000.02 km2, mainly located in the Po plain, low hills, and mountain valleys. We stress that the Japanese beetle is a high-risk invasive species in human-dominated landscapes. Thus, we strongly recommend that local administrations quickly enact pest management in order to reduce further spread.

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3