Tariff Analysis in Automobile Insurance: Is It Time to Switch from Generalized Linear Models to Generalized Additive Models?

Author:

Díaz Martínez Zuleyka1ORCID,Fernández Menéndez José2ORCID,García Villalba Luis Javier3ORCID

Affiliation:

1. Group of Analysis, Security and Systems (GASS), Department of Financial and Actuarial Economics & Statistics, Faculty of Economics and Business Administration, Universidad Complutense de Madrid (UCM), Campus Somosaguas, 28223 Madrid, Spain

2. Department of Business Administration, Faculty of Economics and Business Administration, Universidad Complutense de Madrid (UCM), Campus Somosaguas, 28223 Madrid, Spain

3. Group of Analysis, Security and Systems (GASS), Department of Software Engineering and Artificial Intelligence (DISIA), Faculty of Computer Science and Engineering, Office 431, Universidad Complutense de Madrid (UCM), Calle Profesor José García Santesmases, 9, Ciudad Universitaria, 28040 Madrid, Spain

Abstract

Generalized Linear Models (GLMs) are the standard tool used for pricing in the field of automobile insurance. Generalized Additive Models (GAMs) are more complex and computationally intensive but allow taking into account nonlinear effects without the need to discretize the explanatory variables. In addition, they fit perfectly into the mental framework shared by actuaries and are easier to use and interpret than machine learning models, such as trees or neural networks. This work compares both the GLM and GAM approaches, using a wide sample of policies to assess their differences in terms of quality of predictions, complexity of use, and time of execution. The results show that GAMs are a powerful alternative to GLMs, particularly when “big data” implementations of GAMs are used.

Funder

THEIA (Techniques for Integrity and Authentication of Multimedia Files of Mobile Devices) UCM project

THEIA I (Techniques for Integrity, Authentication, and Scene Recognition in Multimedia Files of Mobile Devices—Part I) UCM project

Ministerio de Ciencia e Innovación

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference73 articles.

1. Generalized Linear Models;Nelder;J. R. Stat. Soc. Ser. A,1972

2. Statistical motor rating: Making effective use of your data;Brockman;J. Inst. Actuar.,1992

3. Generalized Linear Models and Actuarial Science;Haberman;J. R. Stat. Soc. Ser. D,1996

4. Denuit, M., Hainaut, D., and Trufin, J. (2019). Effective Statistical Learning Methods for Actuaries I. GLMs and Extensions, Springer.

5. Goldburd, M., Khare, A., Tevet, D., and Guller, D. (2020). Generalized Linear Models for Insurance Rating, Casualty Actuarial Society. [2nd ed.].

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3