Abstract
Trajectory data are often used as important auxiliary information in preprocessing and extracting the target from mobile laser scanning data. However, the trajectory data stored independently may be lost and destroyed for various reasons, making the data unavailable for the relevant models. This study proposes recovering the trajectory of the scanner from point cloud data following the scanning principles of a rotating mirror. Two approaches are proposed from different input conditions: Ordered three-dimensional coordinates of point cloud data, with and without acquisition time. We recovered the scanner’s ground track through road point density analysis and restored the position of the center of emission of the laser based on plane reconstruction on a single scanning line. The validity and reliability of the proposed approaches were verified in the four typical urban, rural, winding, and viaduct road environments using two systems from different manufacturers. The result deviations of the ground track and scanner trajectory from their actual position were a few centimeters and less than 1 decimeter, respectively. Such an error is sufficiently small for the trajectory data to be used in the relevant algorithms.
Funder
the National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献