3D Road Boundary Extraction Based on Machine Learning Strategy Using LiDAR and Image-Derived MMS Point Clouds

Author:

Suleymanoglu Baris1ORCID,Soycan Metin1,Toth Charles1ORCID

Affiliation:

1. Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, 470 Hitchcock Hall, 2070 Neil Ave., Columbus, OH 43210, USA

Abstract

The precise extraction of road boundaries is an essential task to obtain road infrastructure data that can support various applications, such as maintenance, autonomous driving, vehicle navigation, and the generation of high-definition maps (HD map). Despite promising outcomes in prior studies, challenges persist in road extraction, particularly in discerning diverse road types. The proposed methodology integrates state-of-the-art techniques like DBSCAN and RANSAC, aiming to establish a universally applicable approach for diverse mobile mapping systems. This effort represents a pioneering step in extracting road information from image-based point cloud data. To assess the efficacy of the proposed method, we conducted experiments using a large-scale dataset acquired by two mobile mapping systems on the Yıldız Technical University campus; one system was configured as a mobile LiDAR system (MLS), while the other was equipped with cameras to operate as a photogrammetry-based mobile mapping system (MMS). Using manually measured reference road boundary data, we evaluated the completeness, correctness, and quality parameters of the road extraction performance of our proposed method based on two datasets. The completeness rates were 93.2% and 84.5%, while the correctness rates were 98.6% and 93.6%, respectively. The overall quality of the road curb extraction was 93.9% and 84.5% for the two datasets. Our proposed algorithm is capable of accurately extracting straight or curved road boundaries and curbs from complex point cloud data that includes vehicles, pedestrians, and other obstacles in urban environment. Furthermore, our experiments demonstrate that the algorithm can be applied to point cloud data acquired from different systems, such as MLS and MMS, with varying spatial resolutions and accuracy levels.

Funder

Yildiz Technical University Scientific Research Projects Commission

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3