Research Progress of Aluminum Alloy Welding/Plastic Deformation Composite Forming Technology in Achieving High-Strength Joints

Author:

Song Gang1ORCID,Wang Zejie1,Fan Xiaoyu1,Liu Liming1

Affiliation:

1. Key Laboratory of Liaoning Advanced Welding and Joining Technology, School of Material Science and Engineering, Dalian University of Technology, Dalian 116024, China

Abstract

Fusion welding causes joint deterioration when joining aluminum alloys, which limits the use of aluminum alloy components in high-end equipment. This paper focuses on an overview of how to achieve high-strength aluminum alloy welded joints using welding/plastic deformation composite forming technology. The current technology is summarized into two categories: plastic deformation welding and plastic deformation strengthening. Plastic deformation welding includes friction stir welding, friction welding, diffusion welding, superplastic solid-state welding, explosive welding, and electromagnetic pulse welding. Plastic deformation strengthening refers to the application of plastic deformation to the weld seam or heat-affected zone, or even the whole joint, after welding or during welding, including physical surface modification and large-scale plastic deformation technology. Important processing parameters of plastic deformation welding and their effects on weld quality are discussed, and the microstructure is described. The effect of plastic deformation strengthening technology on the microstructure and performance evolution, including the hardness, tensile strength, fatigue property, residual stress, and hot cracking of aluminum alloy welded joints, and its evolution mechanism are systematically analyzed. Finally, this paper discusses the future development of plastic deformation strengthening technology and anticipates growing interest in this research area.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Liaoning Province Applied Basic Research Program Project

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3