Ultrasonic Non-Destructive Detection Method for Residual Stress in Rotary Forging Aluminum Alloy Plates

Author:

Chen Hongyu123,Wang Xiaokai123,Han Xinghui123,Zheng Fangyan123,Yan Wenlong123

Affiliation:

1. Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China

2. Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan University of Technology, Wuhan 430070, China

3. School of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, China

Abstract

Aluminum alloy plates are widely used to manufacture large-scale integral structure parts in the field of aerospace. During the forming and processing of aluminum alloy plates, different degrees of residual stress are inevitably produced. Fast and accurate detection of residual stress is very essential to ensuring the quality of these plates. In this work, the longitudinal critically refracted (LCR) wave detection method based on a one-transmitter and double-receiver (OTDR) transducer and the finite element simulation were employed to obtain the residual stress. Aluminum alloy plates with different deformation amounts were fabricated by rotary forging to obtain different residual stress states. Results reveal that the plate formed by rotary forging is in a stress state of central tension and edge compression. As the deformation increases from 20% to 60%, the peak residual tensile stress increases from 156 MPa to 262 MPa, and there is no significant difference in the peak compressive stress. When the deformation reaches 60%, the difference in the residual stresses at different depths is less than 13%, which indicates that the plastic deformation zone basically penetrates the entire longitudinal cross-section of the plate. The maximum deviation between measurement and FE is 61 MPa, which means the experimental data are in good agreement with the FE results.

Funder

National Natural Science Foundation of China

Wuhan East Lake New Technology Development Zone “open list” project

Innovative Research Team Development Program of the Ministry of Education of China

111 Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3